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Abstract. Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing
the integral of g1 from perturbative QCD prediction in the scaling region to the moment of g1 in the
resonance region. The spin structure function in the resonance region is estimated by the parametrization
forms of non-resonance background and of resonance contributions. The uncertainties of our calculations
due to those parametrization forms are discussed. Moreover, the effect of the ∆(1232)-resonance in the
first resonance region and the role of the resonances in the second resonance region are explicitly shown.
Elastic peak contribution to the duality is also analyzed.

PACS. 13.60.Hb Total and inclusive cross-sections (including deep inelastic processes) – 12.38.-t Quantum
Chromodynamics – 13.60.Fz Elastic and Compton scattering – 12.40.Nn Regge theory, duality, absorp-
tive/optical models

1 Introduction

Recently, the new evidence of valence-like quark-hadron
duality in the nucleon unpolarized structure function F2

was reported by Jefferson Lab. [1]. It is claimed that the
new data of F2 can revisit the quark-hadron duality and
the duality is valid even in the rather low momentum
transfer region of Q2 ∼ 1GeV2. In addition, ref. [1] also
showed that the duality holds even for individual reso-
nance contribution as well as for the entire inelastic reso-
nance region.

We know Bloom-Gilman quark-hadron duality [2] tells
that prominent resonances do not disappear relative to
background contribution even at a large Q2 and moreover,
the average of the oscillate resonance peaks in the reso-
nance region is the same as that of the scaling structure
function at a large Q2 value. The origin of Bloom-Gilman
quark-hadron duality has been discussed by De Rujula,
Georgi and Politzer [3] with a QCD explanation. It was
extensively analyzed by Carlson and Mukhopadhyay [4–6]
through a consideration of the asymptotic perturbative
QCD (pQCD) behaviors of the resonance electromagnetic
transition amplitudes at large Q2 (see also ref. [7]). The
quark-hadron duality of the nucleon structure function F2

for different targets, like proton, deuteron and light com-
plex nuclei, was also discussed by Ricco et al. and by Sim-
ula et al. [8–10]. In the papers of refs. [8–10] it is concluded
that the elastic and ∆(1232) peaks lead to remarkable vi-
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olations of the duality for the nucleon unpolarized struc-
ture function F2. Recently, Close and Isgur [11] investi-
gated Bloom-Gilman duality by using the quark model.
They reiterated that the quark-hadron duality is essen-
tial to understand the physics behind the connection be-
tween pQCD and non-perturbative QCD (nQCD). More-
over, they stressed that the duality shows fundamental is-
sues in the strong interaction. Till now, many interesting
studies of the quark-hadron duality have appeared [12–18].

It is known that Bloom-Gilman quark-hadron duality
for the nucleon spin structure function g1 is still an open
question, because we are short of data in the resonance
region. One naturally expects that the onset of the quark-
hadron duality for g1 of the proton target is at a larger
Q2 than the valid value of the onset of the duality for the
proton unpolarized structure function F2 [6]. This is be-
cause that very strong Q2-dependence of g1 at low Q2 is
needed by the well-known Gerasimov-Drell-Hearn (GDH)
sum rule [19]. An experimental study of the quark-hadron
duality in the nucleon spin structure function g1 was per-
formed by HERMES group very recently [20]. The data
indicate that the onset of the duality for g1 is believed at
a larger Q2 than 1.7GeV2.

In this work, we will employ the parametrization form
of the nucleon spin structure function, which was given
by Simula et al. in ref. [10], to represent g1 in the res-
onance region. Then, we shall compare the integral of
the nucleon spin structure function in the resonance re-
gion to the one from pQCD prediction of the scaling spin
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structure function in the scaling region in order to check
Bloom-Gilman quark-hadron duality of g1. In addition,
the uncertainties of our calculations will be shown.

2 Calculations and results

The parametrization form of the nucleon spin structure
function in the resonance region, in ref. [10], contains nu-
cleon elastic effect and the contributions of the resonances
and non-resonance background. The last one is smoothly
parametrized from the Regge behavior, expected to be
dominant at low values of Q2, to the partonic descrip-
tion valid at high values of Q2. This approach for the
parametrization of the background was inspired by the
work of ref. [21]. Fourteen parameters are involved in this
form. Those parameters have been fixed and explicitly
given in ref. [10]. It is claimed that the total fit of all
the 209 experimental data points can be achieved and
the obtained χ2 is about 0.66. Moreover, a simple Breit-
Wigner shape was used to describe the W -dependence of
the contribution of an isolated resonance following the ap-
proaches of refs. [22,23]. All four-star resonances, having
a mass MR < 2GeV and a total transverse photoam-
plitude

√

|A1/2|2 + |A3/2|2 larger than 0.05GeV−1/2, are
considered. The relativistic Breit-Wigner shape and the
interference between the longitudinal and transverse cross-
sections are also included for each resonance. It should
be mentioned that the GDH sum rule value at the real
photon point of the proton target of this parametrization
form is 204± 23µb and the forward spin polarizability γ0

is (−45± 20)× 10−6 fm4.
Conventionally, the entire resonance region with the

center-of-mass energy (W ) being M +mπ ≤ W ≤ 2GeV
(M and mπ are the masses of the nucleon and pion me-
son, respectively) is divided into several parts including
the first resonance region with M +mπ ≤W ≤ 1.38GeV,
the second one with 1.38 ≤ W ≤ 1.61GeV, and the third
one with 1.61 ≤ W ≤ 1.80GeV. We know that the first
resonance region is ∆(1232)-resonance dominant, the sec-
ond one mainly contains the contributions from the reso-
nances of negative parity D13(1520), S11(1535) and pos-
itive parity N∗(1440). It is believed that the contribu-
tion from the two negative-parity resonances is more im-
portant than the role of the Roper resonance N ∗(1440).
Moreover, S∗

11(1650),D15(1680), F15(1680) andD33(1700)
are involved in the third resonance region. Beyond these
three resonance regions, F35(1905) and F37(1950) are con-
sidered for the main contribution of the resonances with
W ≤ 2GeV. Therefore, the ten resonances considered in
the parametrization of g1 in ref. [10] reasonably represent
almost all the contributions of the resonances.

First of all, let us calculate the average of the structure
function g1 in the entire inelastic resonance region

Ir(Q2) =

∫ ξmax

ξmin

dξ gr1(xB, Q
2), (1)

where r stands for the parametrization of g1 in the res-
onance region (see ref. [10] in detail), and the Bjorken

variable xB is

xB =
Q2

2Mω
, (2)

with ω = W 2
−M2

+Q2

2M being the photon energy. In eq. (1)
ξ is the Nachtmann variable [24]

ξ =
2xB

(1 +
√

1 + 4M2x2
B
/Q2)

, (3)

and ξmin (ξmax) in the integrated interval of eq. (1) stands
for ξ with the minimum of the center-of-mass energy
W =M+mπ (the maximum ofW = 2GeV). One can also
estimate the average of the resonance contribution with
respect to ξ in each individual resonance region of W . It
should be mentioned that the Nachtmann variable is the
correct one in studying QCD scaling violations in the nu-
cleon because it partially takes the target-mass correction
into account [25]. For a detailed study of the target-mass
correction on the moments of g1 the interested reader is
referred to ref. [26].

We know that Bloom-Gilman quark-hadron duality in-
dicates that the smooth scaling curve seen at high Q2 re-
gion is an accurate average over the resonance bumps seen
at low Q2. To check the duality, we compare the average in
eq. (1) to the integral of the scaling spin structure function
in the deep inelastic scattering region

IS(Q2
0) =

∫ ξmax

ξmin

dξ gS1 (xB, Q
2
0) (4)

at a high Q2
0, where S stands for the scaling structure

function. ξmin and ξmax in eq. (4) are the same as those
in eq. (1). Therefore, the related center-of-mass energy W
in eq. (4) is much larger than that in eq. (1) because of
large Q2

0. Here, we choose Q2
0 = 30GeV2, so that the scal-

ing structure function is mainly related to pQCD physics.

Then, we can compare the scaling behavior of IS(Q2
0)

at a high Q2
0 value (say Q2

0 ∼ 30GeV2) to the average
of g1 (see eq. (1)) in the resonance region including the
resonance bumps at a low Q2 to check the occurrence of
the quark-hadron duality for the nucleon spin structure
function g1. We know that the constancy of the ratio

R(Q2) =
Ir(Q2)

IS(Q2
0)

(5)

is a test of the quark-hadron duality. In fig. 1, we dis-
play the ratio R(Q2) of the average of g1 in the entire
inelastic resonance region including the resonance peaks
to the integral of the next-to-leading order pQCD pre-
diction of the scaling spin structure function. The scaling
structure function by Glück, Reya, Stratmann and Vo-
gelsang (GRSV) [27] is used here. One can also calcu-
late the ratio R(Q2) with some other pQCD prediction
of the scaling spin structure function like the one by the
Asymmetry Analysis Collaboration (AAC) [28]. Our re-
sults show that the two ratios are very similar in this kine-
matical region and they both are strongly Q2-dependent
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Fig. 1. Ratios with the scaling structure function of GRSV.
The solid curve is the ratio in the entire inelastic resonance
region. The dashed and dotted-dashed curves are the ra-
tios R∆(Q2) and Rr2(Q2), respectively, contributed by the
∆(1232)-resonance in the first resonance region and by the
resonances in the second resonance region.
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Fig. 2. The shaded band of the ratio R(Q2) with the scaling
structure function of GRSV. The width is due to the uncertain-
ties of the parametrization form of g1 in the resonance region.

in the region of Q2 ≤ 2GeV2 (see fig. 1). They become
slightly Q2-dependent when Q2 ≥ 2GeV2. It implies that
the quark-hadron duality for g1 may preserve in the range
Q2 ≥ 2GeV2. In addition, in fig. 1, we also separately plot
the roles of the ∆(1232)-resonance in the first resonance
region by

R∆(Q2) =

∫

∆ξ1
dξg∆(xB, Q

2)
∫

∆ξ1
dξgS(xB, Q2

0)
, (6)

and of all the resonances in the second resonance region by

Rr2(Q2) =

∫

∆ξ2
dξgr2(xB, Q

2)
∫

∆ξ2
dξgS(xB, Q2

0)
. (7)
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Fig. 3. The shaded band of the ratio R∆(Q2) with the scaling
structure function of GRSV. Notations as in fig. 2.
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Fig. 4. The shaded band of the ratio Rr2(Q2) with the scaling
structure function of GRSV. Notations as in fig. 2.

In eqs. (6) and (7), ∆ξi stands for the interval of ξ withW
in the i-th resonance region, and g∆ and gr2 are the spin
structure functions contributed by the ∆(1232)-resonance
and by all the resonances, like S11(1535), D13(1520) and
N∗(1440), in the second resonance region. They can also
be estimated by the parametrization forms of the reso-
nance electromagnetic transition amplitudes in ref. [10].
We can clearly see, from fig. 1, that the role of ∆(1232) vi-
olates the quark-hadron duality more evidently than that
of the resonances in the second resonance region. This phe-
nomenon is reasonable because the transition amplitudes
of the ∆(1232)-resonance provide a negative contribution
to the ratio. Moreover, from our numerical calculations
we find that the non-resonance background contribution
is also important even in the first resonance region. In ad-
dition, the two ratios by eqs. (6) and (7) with the AAC
pQCD calculation are also the same as those with GRSV
scaling structure function. To consider the uncertainties
of our calculations explicitly, we, in fig. 2, show the ratio
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Fig. 5. Ratio Rel(Q2) of GRSV. The shaded band is due to
the uncertainties of the parametrization forms of the nucleon
elastic form factors.
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Fig. 6. Ratio Rr2(Q2) of AAC. Notations as in fig. 5.

R(Q2) of GRSV including the uncertainties of the pseudo-
data of g1 in the resonance region (see ref. [10] in detail).
In the same way, figs. 3 and 4 show the uncertainties of our
calculations of the ∆(1232)-resonance contribution and of
the one of the resonances in the second resonance region.

Besides the comparison of the integrals of the nucleon
spin structure functions in the inelastic resonance region
and in the scaling one, the study of the local Bloom-
Gilman quark-hadron duality of g1 in the elastic region
is also of a great interest. In fact, there are several works
which have stressed the important contribution of the elas-
tic peak to the nucleon spin structure functions [29], to the
GDH sum rule, and to Bloom-Gilman quark-hadron dual-
ity of F2 [12,30] in the literature. Here, in order to check
the local duality of g1 in the elastic region, we calculate
a ratio

Rel(Q2) =
Ir(Q2; el)

IS(Q2
0; el)

, (8)
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Fig. 7. Total ratio RT (Q2) of GRSV. The shaded band indi-
cates the uncertainties in the parametrization form of g1 in the
resonance region.
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Fig. 8. Total ratio RT (Q2) of AAC. Notations as in fig. 7.

where

Ir(Q2; el) =

∫ ξπ

1

dξgr1(xB, Q
2) =

−
GM (Q2)(GE(Q

2) + τGM (Q2))

2(1 + τ)

ξ2el
2− ξel

(9)

is the contribution of the nucleon form factor with τ =
Q2/4M2

N and ξel = 2/(1 +
√

1 + 1/τ). IS(Q2
0; el) in the

denominator of eq. (8) represents the integral of the scal-
ing structure function gS1 with the same interval of ξ as
in eq. (9). It is an integral in unphysical region as dis-
cussed in detail in ref. [30]. In the work of ref. [10], the
parametrization forms of the nucleon elastic form factors
by Mergell, Meissner and Drechsel [31] is employed, as-
suming a 5% uncertainty. Here, we also set Q2

0 = 30GeV2.
The ratios obtained are shown in figs. 5 and 6, respectively,
with GRSV and AAC scaling structure functions includ-
ing the uncertainties of the nucleon form factors as well.
On the one hand, we see that the elastic peak violates
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duality remarkably because of the explicit Q2-dependence
of the ratio of GRSV (see fig. 5). It implies that in the
range of Q2 ≤ 5GeV2, the local duality of g1 in the elas-
tic region does not survive. On the other hand, the ra-
tio of AAC in fig. 6 becomes slightly Q2-dependent when
Q2 ≥ 3GeV2. The large difference between the two curves
of GRSV and AAC is due to the different behaviors of the
two scaling spin structure functions in the large-ξ region.
It is expected that the future precise measurements of the
nucleon structure function in the large-ξ region can clarify
this issue.

Furthermore, figs. 7 and 8, respectively, show a total
ratio RT (Q2),

RT (Q2) =
Ir(Q2; el) + Ir(Q2)

IS(Q2
0; el) + IS(Q2

0)
, (10)

including the uncertainties of g1 in the resonance region
and in the elastic region. Two scaling structure functions
of GRSV and AAC are considered separately. It should
be mentioned that RT (Q2) includes the roles of the elas-
tic peak in the elastic region and of g1 in the inelastic
resonance region simultaneously. One may find that the
quark-hadron duality still holds when Q2 ≥ 2GeV2. This
conclusion is similar to the one for R(Q2) in the total
inelastic resonance region as shown in figs. 1 and 2.

3 Conclusions

By using the phenomenological parameterization form of
the nucleon spin structure functions g1, we have studied
the onset of Bloom-Gilman quark-hadron duality. We em-
ployed the pQCD prediction and the parametrization form
to represent the nucleon spin structure function g1 in the
scaling region and in the resonance region, respectively.
We estimate the uncertainties of our calculations. These
uncertainties are due to the parametrization form of g1 in
the resonance region of ref. [10]. The ratios between the
average of g1 in the entire inelastic resonance region to the
integrals of it in the scaling region are displayed. We also
explicitly show the roles of the ∆(1232)-resonance and of
the resonances in the second resonance region. The elastic
peak contribution is illustrated in our calculations as well.
The ratios of the entire inelastic resonance region show
that the duality may preserve when Q2 ≥ 2GeV2. More-
over, we display that the effect of the ∆(1232)-resonance
violates quark-hadron duality. The role of the elastic peak
to the local duality is inconclusive because of the large dif-
ference of the two ratios in figs. 5 and 6. Our calculations
also indicate the important effect of the non-resonance
background. The ratios in figs. 7 and 8 include the to-
tal contributions of the elastic peak and of g1 in the in-
elastic resonance region. They tell that the onset of the
quark-hadron duality may still appear whenQ2 ≥ 2GeV2.
In addition, the similar behaviors of the total ratios of
GRSV and AAC in figs. 7 and 8 indicate that the duality
may hold when Q2 ≥ 2GeV2. The two figures also show
that the large difference between the elastic contributions
Rel(Q2) of GRSV and AAC is reduced.

In fact, there was a discussion about the contribu-
tion of the elastic peak to the local duality of F2 (see
refs. [32–34]). It is found that the elastic local duality
becomes more and more sensitive to the behavior of the
scaling structure function at large ξ when Q2 increases.
So far, whether the elastic contribution satisfies the
local duality of F2 is still an open question. We need
high-precision scaling structure functions, especially
in the large-ξ region, to clarify this issue. It should be
mentioned that the almost Q2-independences of the ratios
at Q2 ≥ 2GeV2 shown in figs. 1, 2 and 4 evidently deviate
from unity. It is argued that this feature may be due to
the difficulty in accurately modeling the large-ξ behavior
of g1, since there is a very limited amount of data in the
deep inelastic scattering region available particularly in
the large-ξ or large-xB region. So far, how to assume the
extrapolation from the measured region to the elastic one
in the perturbative QCD next-to-leading order predictions
is not clearly. Moreover, the extraction of the structure
function depends on the ratio of the longitudinal-to-
transverse cross-sections. In fact, this ratio is quite
uncertain and not small in the large-xB and low-Q2 re-
gions. Thus, to test duality in this region by experiments,
we need high-precision data in which the longitudinal
and transverse cross-sections can be well separated.
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